Social Science Theories for Natural Scientists Part 2: A Workshop on Applying Social Science Theories to Design and Assessment of STEM Interventions

Rick McGee, Michelle Naffziger, Jennifer Richardson-Stovall, Simon Williams & Lynn Gazley

Scientific Careers Research & Development Group

Understanding Interventions 2012
Most of you don’t have time to become experts in the social sciences, but…

Why should you want to?
Interventions take place in ‘social’ environments with multiple contexts, not just learning or doing science.

How can you use this information?
By knowing social science theories, you can better understand student behavior, interventions and the workings of research groups and mentors.

Any other use for theories?
With more experience, you can begin to prospectively design interventions to achieve developmental purposes and/or assess their impacts from theories.

How much do I need to learn?
That is one of the questions we are asking – how much we need to teach you for you to be able to have new insights and apply this information effectively.
Last year we introduced ‘de-coders’. This year we focus on application of theories.

We will introduce 4 social science theories/principles useful in looking at scientific development, and interventions promoting interest and development.

The theories are the basis of our Pathfinder Award: The Academy for Future Science Faculty, an example of how to apply theory to designing an intervention.

You will remember little unless you get to construct meaning. We will break into smaller groups to practice applying theory to your current or potential intervention (facilitated).

If you have an intervention you would like to assess/evaluate more deeply, you can also reverse-engineer practice to begin recognizing where theories inform.
Teaching SS theories to scientists and students is easier than we expected

Experience with teaching theories
To date, we have introduced 100 beginning PhD students and 15 ‘coaches’ to SS theories – everyone seems to ‘get it’ pretty easily.

Students saw them as useful
Even spending 15-20 minutes on each theory at the Academy meeting, students indicated they felt they understood and saw them as useful.

What is different today?
Today we focus on you applying them to your situations, programs and objectives.

What if you want more?
We would be happy to schedule phone or Skype conferences to assist you.
Think of theories as a set of tools

Communities of Practice
- Social learning
- Inclusion based on perceived competence

Identity
- Multiple senses of “self” based on interactions with the social world
- Contingencies including discrimination and stereotypes

Cultural Capital
- Social reproduction by dominant groups
- Focus on promotion and fit based on perceptions of knowledge and skills

Social Cognitive Career Theory
- Individuals move toward particular careers based on experiences, interests, self-efficacy and goals

How do group processes such as shared norms, inclusion and exclusion affect the integration of young scientists into laboratories and other groups?

How do students develop an identity as an academic scientist? How does a scientist identity interact with racial, ethnic, and gender identities? How do young scientists deal with stereotypes and discrimination?

What skills, knowledge, attitudes and values do young scientists need to “fit” with the culture of science? How are students differently evaluated based on gender, race, and ethnicity?

How do experiences translate into science self-efficacy and a goal as an academic scientist? How are students moved toward, or away from, academic science careers?
Trajectory Toward the PhD

Introductory Research
- Learns lab techniques
- Observes others

Becoming independent
- Designs experiment
- Presents results
- Follows protocols
- Analyzes data

Increasing Research Experience
- Contributes in lab
- Raises questions
- Looks for literature
- Writes proposal

Speaking like a scientist/Scientist identity
- May complete independent project
- Produces paper or thesis
- Networks beyond the lab

Ready for Grad School
- GRE

Applies to PhD
- Begins PhD

Likes science
- Develops as a researcher
- Clarifies goals

Increasing Research Experience
Trajectory During PhD Training

Big Milestone #1
- New city, living alone
- “How good am I”
- “How will I do in classes?”
- “What’s expected of me?”
- “How do others see me?”
- New or reliable project?
- High or low impact?
- Independent or close connection with mentor?
- How do others see me?
- “Am I ready/good enough?”
- “How much help can I get writing my proposal and from whom?”
- Prep or quals vs. work in the lab
- Impressions of others going into quals

Big Milestone #2

Arrives at PhD
- Transitions
- Rotations
- Start Research
- Prep for Quals
- Just do it!
- Begins PhD

Through the eyes of a student
Trajectory During PhD Training

Arrives at PhD

- New city, living alone
 - "How good am I?"
 - "How will I do in classes?"

Transitions

- "What's expected of me?"
- "How do others see me?"
- Finding a mentor
- Learning what is not obvious

Rotations

- New or reliable project?
- High or low impact?
- Independent or close connection with mentor?
- How do others see me?

Start Research

Big Milestone #1

Just do it!

Begin PhD

Prep for Quals

Big Milestone #2

- "Am I ready/good enough?"
- "How much help can I get writing my proposal and from whom?"
- Prep or quals vs. work in the lab
- Impressions of others going into quals

Through the eyes of a student
What determines what a student arrives with at the starting line of the PhD?

The obvious things:

- Depth and mastery of science and math knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests
What determines what a student arrives with at the starting line of the PhD?

The less obvious things:
- How far they are achieving beyond family and peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Social Cognitive Career Theory

Person Inputs

Contextual Supports

- Self-Efficacy
- Learning Experiences
- Interests
- Outcome Expectations

Content Goals
Performance Goals

Contextual Barriers

Performance Attainments
Arrival at the PhD seen through theories: Social Cognitive Career Theory (SCCT)

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
 - Clarity of research interests

Learning Experiences

Science Self-efficacy

Interests

Outcome Expectations

Goals

Performance Attainment

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which career goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Social Cognitive Career Theory (SCCT)

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which career goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences

Learning Experiences
Science Self-efficacy
Interests
Outcome Expectations
Goals
Performance Attainment

Learning Experiences
Science Self-efficacy
Interests
Outcome Expectations
Goals
Performance Attainment
Arrival at the PhD seen through theories: Social Cognitive Career Theory (SCCT)

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
 - Clarity of research interests

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which career goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Cultural Capital

Underlying Principles:
• Social reproduction by dominant groups
• Promotion and fit based on perceptions of knowledge and skills

Impacts on Students and Interventions:
• What skills, knowledge, attitudes and values do young scientists need to “fit” with the culture of science?
• How are students differently evaluated based on gender, race, and ethnicity?
Arrival at the PhD seen through theories: Cultural Capital

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

“Resources” to use within a given setting

Knowledge, skills, credentials

Being seen as a scientist

Habitus – habits, behaviors of scientists

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Cultural Capital

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, 'stuff'
- Clarity of research interests

“Resources” to use within a given setting

Knowledge, skills, credentials

Being seen as a scientist

Habitus – habits, behaviors of scientists

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Identity Development

Underlying Principles:
• Multiple senses of “self” based on interactions with the social world
• Contingencies including discrimination and stereotypes

Impacts on Students and Interventions:
• How do students develop an identity as an academic scientist?
• How does a scientist identity interact with racial, ethnic, and gender identities?
• How do young scientists deal with stereotypes and discrimination?
Arrival at the PhD seen through theories: Overall Identity Development

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

Identity Contingencies

Stereotype Threat

Cultural Code Switching

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Overall Identity Development

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Scientific Identity Development

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

Competence

Performance

Self-Recognition

Recognition by Others

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Scientific Identity Development

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

Competence

Performance

Self-Recognition

Recognition by Others

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Scientific Identity Development

The obvious things:
• Depth and mastery of science and math content knowledge
 • But influenced by ‘education’ from day 1
 • Almost impossible to truly catch up during 4 years of college if starting from far behind
• Amount and depth of prior research experience
 • Technical skills mastered and/or ability to learn new ones quickly
 • Science skills such as reading and analytically critiquing primary literature
 • Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
 • Clarity of research interests

The less obvious things:
• How far they are achieving beyond family and early peers
 • How much positive feedback received in the past
 • How much negative feedback received in the past
• Degree of development of identity as a scientist
• Degree to which goals and identity are in conflict with other goals and identities
• General level of self-confidence
• Degree to which others have treated them like a scientist, a member of the club
• Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
• Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Communities of Practice

Underlying Principles:
• Social learning
• Inclusion based on perceived competence and fit

Impacts on Students and Interventions:
• How do group processes such as shared norms, inclusion and exclusion affect the integration of young scientists into laboratories and other groups?
• How are women and URM differentially affected?
Arrival at the PhD seen through theories: Communities of Practice – think lab group

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences

Social environment of people with common interests

Situated learning

Domain of expertise

Shared repertoire of practices

Legitimate peripheral participation

Newcomers become insiders or marginalized
Arrival at the PhD seen through theories: Communities of Practice – think lab group

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

Social environment of people with common interests

Situated learning

Domain of expertise

Shared repertoire of practices

Legitimate peripheral participation

Newcomers become insiders or marginalized

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Arrival at the PhD seen through theories: Communities of Practice – think lab group

The obvious things:

- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

Social environment of people with common interests

Situated learning

Domain of expertise

Shared repertoire of practices

Legitimate peripheral participation

Newcomers become insiders or marginalized

The less obvious things:

- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Communities of Practice takes center stage beginning in PhD and beyond

The obvious things:
- Depth and mastery of science and math content knowledge
 - But influenced by ‘education’ from day 1
 - Almost impossible to truly catch up during 4 years of college if starting from far behind
- Amount and depth of prior research experience
 - Technical skills mastered and/or ability to learn new ones quickly
 - Science skills such as reading and analytically critiquing primary literature
 - Understanding of how the culture of science works – all the unspoken, often hidden, highly variable between labs, ‘stuff’
- Clarity of research interests

Social environment of people with common interests

Situated learning

Domain of expertise

Shared repertoire of practices

Legitimate peripheral participation

Newcomers become insiders or marginalized

The less obvious things:
- How far they are achieving beyond family and early peers
- How much positive feedback received in the past
- How much negative feedback received in the past
- Degree of development of identity as a scientist
- Degree to which goals and identity are in conflict with other goals and identities
- General level of self-confidence
- Degree to which others have treated them like a scientist, a member of the club
- Level of ‘passion’ for doing research vs. PhD as a route to teaching or other use of the PhD
- Overall maturity and breadth of life experiences
Enter mentoring as the central dogma for PhD training and beyond...

- **Shift in approach to learning**
 - Within 1-2 years shift from structured to unstructured learning and skill development – emphasis on independence

- **From teaching to mentoring**
 - “Teaching” disappears, replaced by mentoring and independent learning – including evaluation

- **Presumptions of mentoring**
 - Mentoring highly variable and idiosyncratic process with purposeful maximum latitude for mentors’ judgments and stylistic preferences

- **Challenges/risks for outsiders**
 - Informal learning architecture typically more difficult for anyone starting as an ‘outsider’ to navigate
Now integrate social science theories with mentoring as the central process

Starting point of PhD matters
Real and perceived differences in cultural capital and SCCT variables affect internal and external perceptions

Critical to be seen as scientist
Informal assessments by others take on central role for determination of competence as scientist

Communities of Practice - labs
Each lab group a C of P which students have to navigate to acquire tacit knowledge essential to performance and development as a scientist

High risk for system failures
Really challenging for even well-intended, skilled mentors to craft a learning environment able to support new members entering C of P continuously
What does this mean for interventions at the PhD level?

Most interventions focus on inputs to the PhD
• more diversity and better preparation
• assume mentoring will take it from there or believe Darwin was right – flawed assumptions

Likely essential if we want change

System issues as much as people

Need to look beyond practices and idiosyncrasies of individual mentors - impossible to control

Think about what we hope mentors will provide, assume they often won’t, and fill in the critical gaps

Systematizing more

Early phases critical

Early phases of PhD training high risk of system failure for those coming from ‘atypical’ backgrounds
Applying Theories to Interventions - An Example at the PhD student level

From theories, in what ways could URM students be starting from ‘behind’ other PhD students, be at risk of marginalization and/or not be positioned to excel toward an academic career?

Designed consciously to mitigate disadvantages and proactively provide what may be limiting/hard to get

The Academy for Future Science Faculty
- Funded by NIH Director’s Pathfinder Award
- Several talks and poster will describe more
- Testing adding structured coaching to mentoring

Consider any and all interventions as experiments with explicit hypotheses and assumptions to text
Cultural Capital may be Different for URM and low SES students

- How will PhD be different from BS?
 - Explicitly describe how the PhD works, especially the first year to promote successful start

- How do you choose rotations?
 - Walk through considerations, self-assessment to be aware of areas of needed development

- Afraid to ask for help – look stupid
 - Purposeful provision of safe, skilled Coach separate from environment where evaluation taking place
 - Peer network, others with same questions

- Unknown skills & competencies
 - Self-assessment exercise to sensitive to range of skills and competences needed and begin calibration
 - Naming of Cultural Capital
Scientific identity may be less developed and identity conflicts greater for URM and low SES students.

- **Self-recognition**: Academy as a safe-space to get to know peers, often realizing similarities and common identities – and meet others ‘like themselves’

- **Recognition by others**: Establishment of Academy and Coaching Group identities in a highly positive, supportive environment

- **Identity Contingencies**: Coaches trained and especially sensitive to recognizing and counteracting prior negative feedback from mentors and others

- **Identity Conflicts**: Academy sessions openly, acknowledge, talk about and develop strategies for working with competing and conflicting identities including cultural biases associated with them
URM and low SES students more likely to be marginalized in lab Communities of Practice

- C of P Principles revealed
 Before the implications and impact of C of P can be discussed and addressed students must understand them

- Entry to C of P more at risk
 Active discussion of the social and operational idiosyncrasies of lab group, how to engage, how to acquire tacit or hidden knowledge

- Importance of early impressions
 Emphasis on impact of early impressions, perceptions of legitimacy, oral communication skills critical

- Unconscious and conscious bias
 Active discussion of realities of unconscious and conscious bias towards newcomers unlike the group, tools and approaches to cope and excel
Now it’s YOUR turn!

Where do you want to start?

A new program or activity within a program you are thinking about creating?

An existing activity you want to improve with a theory-based approach?

Existing activities to reverse engineer to see how they fit with theories and student needs?

Focus on specific activity

Hard to do this at the level of a program – need to do for an activity or discrete objective of that activity

For a new activity or improvement

What objective do you want to accomplish? Or What theory-based challenge or barrier are you addressing?

For reverse engineering

Why are you doing the activity? What do you hope to accomplish? What theories apply to its purpose?
Now it’s YOUR turn!

Map the theories to the students

Think of activities as linking students and theories

It may help to pick a theory and how it might apply to your students first, then map activity, student, theory

Based on theories do you see holes?

Another approach can be to consider the theories and key student needs you may not be addressing

Repeat

Ideally you do this mapping and analysis for every component of an intervention

What if it does not map?

You may need to consider why you are doing it and perhaps stop
To Contact Us...

Scientific Careers Research and Development Group
Northwestern University, Feinberg School of Medicine
Chicago, IL 60611
http://www.careersresearch.northwestern.edu/

Email: Rick McGee – r-mcgee@northwestern.edu
Michelle Naffziger – m-naffziger@northwestern.edu
Jennifer Richardson-Stovall – j-richardson@northwestern.edu
Simon Williams – simonwilliams@northwestern.edu
Lynn Gazley – l-gazley@northwestern.edu (soon to have new contact information)
The Scientific Careers Research and Development Group

Practice = Things we do in research training
• Classes
• Mentoring
• Doing research

Theories = Underlying principles explaining social experiences
• ‘Theory’ has different convention in social science
• Can underpin Practice or Research

Research = What gets done in the lab
• Expand to research on our practices
• Hypothesis testing or generating
• First level ‘try it and see what happens’